Module 4 - Python Functions and Linear Regression Basics

Author: Favio Vázquez and Jessica Cervi

Index:

- Question 1
- Question 2
- Question 3
- Question 4
- Question 5
- Question 6
- Question 7
- Question 8
- Question 9
- Question 10
- Question 11
- Question 12
- Question 13

Instructions:

Welcome to Module 4. In this module, you learned about how to define Python functions and the basics of linear regression. We will practice linear regression with two libraries: statsmodel and scikit-learn.

Make sure to watch the coding demos before doing the assigment!

Importing the libraries

Before getting started, make sure that you can run the cell below with no issues. We will be importing all the libraries to work on this assignment.

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
from sklearn import linear_model
from sklearn import metrics
```

Part 1. Python Functions

Question 1

Create a simple Python function called Hello_world that returns the String "Hello World!" .

```
In [2]: ### GRADED
### YOUR SOLUTION HERE
def Hello_world():
    return "Hello World!"

###
### YOUR CODE HERE
###
AUTOGRADER TEST - DO NOT REMOVE
####
```

Question 2

Assign the integer 5 to a variable called x and the integer 3 to a variable called y. Create a Python function called y that takes two numbers as arguments and returns the sum of them. Use the function with x and y and assign the result to a variable called x total.

```
In [4]: ### GRADED
### YOUR SOLUTION HERE
x = 5
y = 3
def plus(x, y):
          total = x+y
          return total
total = plus(x,y)
print(total)
###
### YOUR CODE HERE
###
```

```
In [5]: ### ### AUTOGRADER TEST - DO NOT REMOVE ###
```

Question 3

Create a Python function called plus_args that takes a variable number of arguments and returns the sum of them. Then call the function to sum the numbers 1,4,2,7 and assign the result to a variable called sum_total.

```
def test(*args):
In [6]:
             print(args)
        test(1,2,3)
        (1, 2, 3)
In [7]: ### GRADED
        ### YOUR SOLUTION HERE
        def plus_args(*args): #use arterics args and it makes it a tuple
             total = 0
             for i in args:
                 total += i
             return total
        sum\_total = plus\_args(1,4,2,7)
        print(sum_total)
        ### YOUR CODE HERE
        ###
        14
In [8]:
        ### AUTOGRADER TEST - DO NOT REMOVE
```

Question 4

Define a lambda function called add_one that adds 1 to a variable x. Use this function to add 1 to 89 and assign the result to the variable y.

Part 2. Linear Regression

Question 5

Using only the statsmodel library, read the file data/data.csv and assign to a Pandas dataframe called bikes. Perform a simple linear regression using the variable temp to predict the variable count. Save your **fitted model** in a variable called count_model.

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.OLS() method.

When you create an x variable you need to also add a constant

X = bikes['columns'] X = sm.add_constant(X)

y = ... Check!

Check which arguments are passed! count_model = sm.OLS(ARGUMENTS).fit()

```
In [12]: bikes = pd.read_csv("data/Mod4_data.csv")
          bikes.head(1)
                                                                        atemp humidity windspeed casual registered count hour year
Out[12]:
             datetime season holiday workingday weather
                                                              temp
              2011-01-
          0
                                    0
                                                0
                                                                                                                                0 2011
                                                         1 9.84375 14.398438
                                                                                     81
                                                                                                0.0
                                                                                                         3
                                                                                                                   13
                                                                                                                         16
                   01
             00:00:00
In [13]:
          ### GRADED
          ### YOUR SOLUTION HERE
          import statsmodels.api as sm
          X = bikes['temp']
          Y = bikes['count']
          X = sm.add_constant(X)
          count_model = sm.OLS(Y, X).fit()
          count_model.summary()
          ###
          ### YOUR CODE HERE
          ###
                               OLS Regression Results
Out[13]:
              Dep. Variable:
                                                   R-squared:
                                                                   0.156
                                      count
                    Model:
                                       OLS
                                               Adj. R-squared:
                                                                   0.156
                               Least Squares
                                                                  2006.
                   Method:
                                                   F-statistic:
                      Date: Mon, 12 Aug 2024
                                             Prob (F-statistic):
                                                                   0.00
                     Time:
                                   19:58:34
                                               Log-Likelihood:
                                                                 -71125.
                                                         AIC: 1.423e+05
          No. Observations:
                                      10886
               Df Residuals:
                                      10884
                                                         BIC: 1.423e+05
                  Df Model:
           Covariance Type:
                                  nonrobust
                   coef std err
                                     t P>|t| [0.025 0.975]
          const 6.0523
                         4.439
                                 1.363
                                       0.173 -2.649
                                                     14.754
           temp 9.1704
                         0.205 44.784 0.000
                                               8.769
                                                       9.572
                Omnibus: 1871.808
                                     Durbin-Watson:
                                                        0.369
          Prob(Omnibus):
                             0.000 Jarque-Bera (JB): 3222.277
                   Skew:
                             1.123
                                           Prob(JB):
                                                         0.00
                 Kurtosis:
                             4.434
                                          Cond. No.
                                                         60.4
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Question 6

Using the dataframe bikes from above, use the statsmodel library to perform a simple linear regression using the variables temp and humidity to predict the variable casual. Save your model in a variable called casual_model.

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.0LS() method.

X = dataframe[["column1", "column2"]] Import to use two variables

```
In [15]: ### GRADED
### YOUR SOLUTION HERE
casual_model = None

X = bikes[['temp', 'humidity']]
Y = bikes['casual']

X = sm.add_constant(X)

casual_model = sm.OLS(Y, X).fit()
casual_model.summary()
```

```
###
### YOUR CODE HERE
print(casual_model)
```

<statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x7f9b101831c0>

```
In [16]: ###
         ### AUTOGRADER TEST - DO NOT REMOVE
```

Question 7

Using the dataframe bikes from above, use the statsmodel library to perform a multiple linear regression using the variables temp, humidity, season and holiday to predict the variable count. Save your model in a variable called model_multiple.

Hint: Remeber to add a constant that will work as the Bias or Y-intercept. Use the sm.OLS() method.

```
In [17]: ### GRADED
         ### YOUR SOLUTION HERE
         X = bikes[['temp', 'humidity', 'season', 'holiday']]
         Y = bikes['count']
         X = sm.add_constant(X)
         model_multiple = sm.OLS(Y, X).fit()
         model_multiple.summary()
         model_multiple.summary()
         ### YOUR CODE HERE
                            OLS Regression Results
Out[17]:
```

Dep. Variable:	count	R-squared:	0.258
Model:	OLS	Adj. R-squared:	0.258
Method:	Least Squares	F-statistic:	945.5
Date: N	Mon, 12 Aug 2024	Prob (F-statistic):	0.00
Time:	19:58:34	Log-Likelihood:	-70422.
No. Observations:	10886	AIC:	1.409e+05
Df Residuals:	10881	BIC:	1.409e+05
Df Model:	4		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	164.2718	6.709	24.487	0.000	151.122	177.422
temp	7.8573	0.200	39.243	0.000	7.465	8.250
humidity	-3.0272	0.080	-37.952	0.000	-3.184	-2.871
season	22.3278	1.421	15.708	0.000	19.542	25.114
holiday	-9.6923	8.984	-1.079	0.281	-27.302	7.917

Omnibus:	2099.893	Durbin-Watson:	0.428
Prob(Omnibus):	0.000	Jarque-Bera (JB):	3986.031
Skew:	1.189	Prob(JB):	0.00
Kurtosis:	4.770	Cond. No.	407.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [18]:
         ### AUTOGRADER TEST - DO NOT REMOVE
```

Question 8

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the variable temp to predict the variable count . Save your model in a variable called model_sci .

Then save your intercept in a variable called intercept_simple and your coefficients in a variable called coefs_simple.

Hint: Use the linear_model.LinearRegression() method.

```
In [19]: ### GRADED
### YOUR SOLUTION HERE

from sklearn import linear_model

X = bikes[['temp']]
Y = bikes['count']

regr = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci = regr
intercept_simple = regr.intercept_
coefs_simple = regr.coef_
###
###
### YOUR CODE HERE
###
### AUTOGRADER TEST - DO NOT REMOVE
###
```

Question 9

Predict the value of count at temp = 78. Assign the result to $count_predict$.

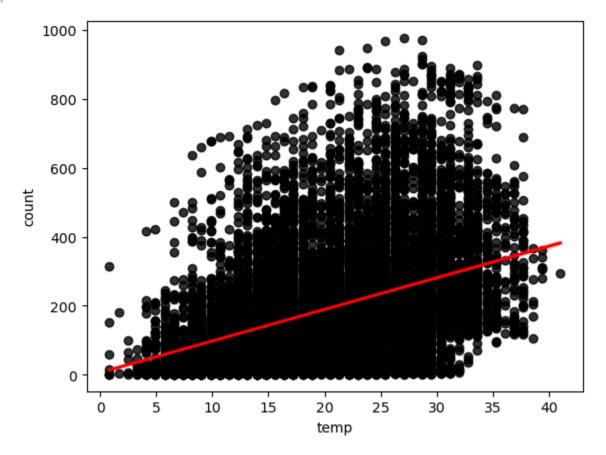
model_sci.predict(ARGUMENT)

```
import seaborn as sns
import matplotlib as plt

sns.regplot(x = X, y = Y, data = bikes, scatter_kws={"color": "black"}, line_kws={"color": "red"})

#sns.show()
```

Out[23]: <AxesSubplot:xlabel='temp', ylabel='count'>



```
In [24]: ### GRADED
### YOUR SOLUTION HERE
count_predict = model_sci.predict([[78]])
print(78*regr.coef_ + regr.intercept_)

count_predict
###
### YOUR CODE HERE

[721.34719247]

/Users/dempseywade/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not hav
e valid feature names, but LinearRegression was fitted with feature names
warnings.warn(
out[24]: ###
### AUTOGRADER TEST - DO NOT REMOVE
```

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the variables temp, humidity, season and holiday to predict the variable count. Save your model in a variable called model_sci_multi.

Hint: Use the linear_model.LinearRegression() method.

```
In [26]: ### GRADED
### YOUR SOLUTION HERE

X = bikes[['temp', 'humidity', 'season', 'holiday']]
Y = bikes['count']

rerg = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci_multi = regr
###
### YOUR CODE HERE
###

In [27]: ###
### AUTOGRADER TEST - DO NOT REMOVE
###
```

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

 $\$ frac 1n\sum_{i=1}^n|y_i-\hat{y}_i|\$\$

Mean Squared Error (MSE) is the mean of the squared errors:

 $\frac{1}^n(y_i-\frac{y_i}^2)^2$

Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

 $\scriptstyle s=1^n(y_i-\eta_{i})^2$

Comparing these metrics:

- MAE is the easiest to understand, because it's the average error.
- MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
- **RMSE** is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are loss functions, hence we want to minimize them.

Question 11

Suppose a model has some true and some predicted values. Define the true values in a list called x_true which contains the following values: 10,20,35,60,87. Define the predicted values in a list called predicted with entries: 14,22,38,79, 93.

Using scikit-learn, compute the Mean Absolute Error (MAE). Assign the value to a variable called mae .

metrics.mean_absolute_error(ARGUMENTS)

related to x_true and x_pred

```
In [28]: ### GRADED
### YOUR SOLUTION HERE
x_true = [10,20,35,60,87]
x_pred = [14,22,38,79,93]
mae = metrics.mean_absolute_error(x_true, x_pred)

mae
###
### YOUR CODE HERE
###

Out[28]:
6.8

In [29]: ###
AUTOGRADER TEST - DO NOT REMOVE
###
```

Question 12

With the same previous true and predicted values, compute the Mean Squared Error (MSE). Assign the value to a variable called mse.

Question 13

With the same previous true and predicted values, compute the Root Mean Squared Error (RMSE). Assign the value to a variable called rmse.

```
In [32]: ### GRADED
### YOUR SOLUTION HERE
import math
rmse = math.sqrt(metrics.mean_squared_error(x_true, x_pred))
rmse
###
### YOUR CODE HERE
###

Out[32]: 9.23038460737146

In [33]: ###
### AUTOGRADER TEST - DO NOT REMOVE
###

In []:
```