Module 4 - Python Functions and Linear Regression Basics

Author: Favio Vazquez and Jessica Cervi

Index:

e Question 1
e Question 2
e Question 3
e Question 4
e Question 5
e Question 6
e Question 7
e Question 8
e Question 9
e Question 10
e Question 11
e Question 12
e Question 13

Instructions:

Welcome to Module 4. In this module, you learned about how to define Python functions and the basics of linear regression. We
will practice linear regression with two libraries: statsmodel and scikit-learn .

Make sure to watch the coding demos before doing the assigment!

Importing the libraries

Before getting started, make sure that you can run the cell below with no issues. We will be importing all the
libraries to work on this assigment.

import numpy as np

import pandas as pd

import statsmodels.api as sm
from sklearn import linear_model
from sklearn import metrics

Part 1. Python Functions

Question 1

Create a simple Python function called Hello_world that returns the String "Hello World!" .

GRADED
YOUR SOLUTION HERE
def Hello_world():

return "Hello World!"

#H#
YOUR CODE HERE
#H#

T
AUTOGRADER TEST - DO NOT REMOVE
Ht#

Question 2

Assign the integer 5 to a variable called x and the integer 3 to a variable called y . Create a Python function called plus that
takes two numbers as arguments and returns the sum of them. Use the function with x and y and assign the result to a
variable called total.

GRADED
YOUR SOLUTION HERE

def plus(x, y):
total = x+y
return total

total = plus(x,y)

print(total)

#H##

YOUR CODE HERE

#H##

8

HH#
AUTOGRADER TEST - DO NOT REMOVE
#H#

Question 3

Create a Python function called plus_args that takes a variable number of arguments and returns the sum of them. Then call
the function to sum the numbers 1,4,2,7 and assign the result to a variable called sum_total .

def test(xargs):
print(args)

test(1,2,3)

(1, 2, 3)

GRADED

YOUR SOLUTION HERE

def plus_args(xargs): #use arterics args and it makes it a tuple
total = 0
for i in args:

total += i

return total

sum_total = plus_args(1,4,2,7)
print(sum_total)

T
YOUR CODE HERE
T

14

#H#
AUTOGRADER TEST - DO NOT REMOVE
HH##

Question 4

Define a lambda function called add_one thatadds 1 to avariable x . Use this function to add 1 to 89 and assign the result to
the variable y .

(lambda x: x+2)(2)
4

GRADED

YOUR SOLUTION HERE
add_one = lambda x:x+1
y = add_one(89)
print(y)

HHH

YOUR CODE HERE
i

90

#H#
AUTOGRADER TEST - DO NOT REMOVE
#H#

Part 2. Linear Regression

Question 5

Using only the statsmodel library, read the file data/data.csv and assign to a Pandas dataframe called bikes . Perform a
simple linear regression using the variable temp to predict the variable count . Save your fitted model in a variable called
count_model .

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.0OLS() method.

When you create an x variable you need to also add a constant

X = bikes['columns'] X = sm.add_constant(X)

y =...Check!

Check which arguments are passed! count_model = sm.OLS(ARGUMENTS) fit()

Run this cell to load the dataset bikes = pd.read_csv("data/data.csv") bikes.head(1)

bikes = pd.read_csv('data/Mod4_data.csv")
bikes.head(1)

datetime season holiday workingday weather temp atemp humidity windspeed casual registered count hour year
2011-01-

0 01 1 0 0 1 9.84375 14.398438 81 0.0 3 13 16 0 20M
00:00:00

GRADED

YOUR SOLUTION HERE

import statsmodels.api as sm

X = bikes['temp']
Y = bikes['count']
X = sm.add_constant(X)

count_model = sm.OLS(Y, X).fit()
count_model.summary ()

#it#
YOUR CODE HERE
#it#
OLS Regression Results
Dep. Variable: count R-squared: 0.156
Model: oLS Adj. R-squared: 0.156
Method: Least Squares F-statistic: 2006.
Date: Mon, 12 Aug 2024 Prob (F-statistic): 0.00
Time: 19:58:34 Log-Likelihood: -71125.
No. Observations: 10886 AIC: 1.423e+05
Df Residuals: 10884 BIC: 1.423e+05
Df Model: 1
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

const 6.0523 4.439 1363 0.173 -2.649 14.754

temp 91704 0.205 44.784 0.000 8.769 9.572

Omnibus: 1871.808 Durbin-Watson: 0.369

Prob(Omnibus): 0.000 Jarque-Bera (JB): 3222.277
Skew: 1123 Prob(JB): 0.00

Kurtosis: 4.434 Cond. No. 60.4

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#H#
AUTOGRADER TEST - DO NOT REMOVE
HH##

Question 6

Using the dataframe bikes from above, use the statsmodel library to perform a simple linear regression using the variables
temp and humidity to predict the variable casual . Save your model in a variable called casual_model .

Hint: Remember to add a constant that will work as the Bias or Y-intercept. Use the sm.0OLS() method.
X = dataframe[["column1", "column2"]] Import to use two variables

GRADED
YOUR SOLUTION HERE
casual_model = None

X = bikes[['temp', 'humidity']]
Y = bikes['casual']
X = sm.add_constant(X)

casual_model = sm.OLS(Y, X).fit()
casual_model.summary()

i
YOUR CODE HERE
#itH
print(casual_model)

<statsmodels.regression.linear_model.RegressionResultsWrapper object at 0x7f9b101831c0>
#Hi#

AUTOGRADER TEST - DO NOT REMOVE
#H#

Question 7

Using the dataframe bikes from above, use the statsmodel library to perform a multiple linear regression using the variables
temp, humidity, season and holiday to predict the variable count . Save your model in a variable called
model_multiple .

Hint: Remeber to add a constant that will work as the Bias or Y-intercept. Use the sm.0OLS() method.

GRADED
YOUR SOLUTION HERE

X = bikes[['temp', 'humidity', 'season', 'holiday']]
Y = bikes['count']
X = sm.add_constant(X)

model_multiple = sm.OLS(Y, X).fit()
model_multiple.summary()

model_multiple.summary ()

#it#
YOUR CODE HERE
#it#
OLS Regression Results
Dep. Variable: count R-squared: 0.258
Model: oLS Adj. R-squared: 0.258
Method: Least Squares F-statistic: 945.5
Date: Mon, 12 Aug 2024 Prob (F-statistic): 0.00
Time: 19:58:34 Log-Likelihood: -70422.
No. Observations: 10886 AIC: 1.409e+05
Df Residuals: 10881 BIC: 1.409e+05
Df Model: 4
Covariance Type: nonrobust
coef stderr t P>|t] [0.025 0.975]

const 164.2718 6.709 24.487 0.000 151122 177.422
temp 7.8573 0.200 39.243 0.000 7.465 8.250
humidity -3.0272 0.080 -37.952 0.000 -3.184 -2.871
season 22.3278 1421 15708 0.000 19.542 25.114

holiday -9.6923 8984 -1.079 0.281 -27.302 7.917

Omnibus: 2099.893 Durbin-Watson: 0.428
Prob(Omnibus): 0.000 Jarque-Bera (JB): 3986.031
Skew: 1.189 Prob(JB): 0.00
Kurtosis: 4.770 Cond. No. 407.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

HH##
AUTOGRADER TEST - DO NOT REMOVE
HH##

Question 8

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the variable
temp to predict the variable count . Save your model in a variable called model_sci .

Then save your intercept in a variable called intercept_simple and your coefficients in a variable called coefs_simple .

Hint: Use the linear_model.LinearRegression() method.

GRADED
YOUR SOLUTION HERE

from sklearn import linear_model

X
Y

bikes[['temp']]
bikes['count']

regr = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci = regr

intercept_simple = regr.intercept_
coefs_simple = regr.coef_

#H#

YOUR CODE HERE
T

HH##
AUTOGRADER TEST - DO NOT REMOVE
i

Question 9

Predict the value of count at temp = 78 . Assign the resultto count_predict .
model_sci.predict(ARGUMENT)

import seaborn as sns
import matplotlib as plt

sns.regplot(x = X, y =Y, data = bikes, scatter_kws={"color": "black"}, line_kws={"color": "red"})

#sns.show()

<AxesSubplot:xlabel="'temp', ylabel='count'>

1000 A

800 A

600 -

count

400

200 7

GRADED

YOUR SOLUTION HERE

count_predict = model_sci.predict([[78]1)
print(78%«regr.coef_ + regr.intercept_)

count_predict

i

YOUR CODE HERE
i

[721.34719247]

/Users/dempseywade/opt/anaconda3/lib/python3.9/site-packages/sklearn/base.py:450: UserWarning: X does not hav
e valid feature names, but LinearRegression was fitted with feature names

warnings.warn(
array([721.34719247])

HH##
AUTOGRADER TEST - DO NOT REMOVE
HH##

Question 10

Using the dataframe bikes from above, use the scikit-learn library to perform a simple linear regression using only the
variables temp , humidity , season and holiday to predict the variable count . Save your model in a variable called
model_sci_multi .

Hint: Use the linear_model.LinearRegression() method.

GRADED
YOUR SOLUTION HERE

X
Y

bikes[['temp', 'humidity', 'season', 'holiday']]
bikes['count']

rerg = linear_model.LinearRegression()
regr.fit(X,Y)

model_sci_multi = regr
#HH

YOUR CODE HERE
#HH

HH##
AUTOGRADER TEST - DO NOT REMOVE
i

Regression Evaluation Metrics

Here are three common evaluation metrics for regression problems:
Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$\frac In\sum_{i=1}"n|y_i-\hat{y}_i|$$
Mean Squared Error (MSE) is the mean of the squared errors:

$$\frac In\sum_{i=1}"n(y_i-\hat{y}_i)"2$$
Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors:

$$\sart{\frac 1n\sum_{i=1}"n(y_i-\hat{y}_i)*2}$$
Comparing these metrics:

e MAE is the easiest to understand, because it's the average error.
e MSE is more popular than MAE, because MSE "punishes" larger errors, which tends to be useful in the real world.
e RMSE is even more popular than MSE, because RMSE is interpretable in the "y" units.

All of these are loss functions, hence we want to minimize them.

Question 11

Suppose a model has some true and some predicted values. Define the true values in a list called x_true which contains the
following values: 10,20,35,60,87. Define the predicted values in a list called x_pred with entries: 14,22,38,79, 93.

Using scikit-learn, compute the Mean Absolute Error (MAE). Assign the value to a variable called mae .

metrics.mean_absolute_error(ARGUMENTS)

related to x_true and x_pred

GRADED

YOUR SOLUTION HERE

x_true = [10,20,35,60,87]

x_pred = [14,22,38,79,93]

mae = metrics.mean_absolute_error(x_true, x_pred)

mae
S
YOUR CODE HERE
JEiE

6.8

#H#
AUTOGRADER TEST - DO NOT REMOVE
HH##

Question 12

With the same previous true and predicted values, compute the Mean Squared Error (MSE). Assign the value to a variable called
mse .

GRADED

YOUR SOLUTION HERE

mse = metrics.mean_squared_error(x_true, x_pred)
mse

HHH

YOUR CODE HERE

#HHH

85.2

#H##
AUTOGRADER TEST - DO NOT REMOVE
##H

Question 13

With the same previous true and predicted values, compute the Root Mean Squared Error (RMSE). Assign the value to a variable
called rmse .

GRADED

YOUR SOLUTION HERE

import math

rmse = math.sqrt(metrics.mean_squared_error(x_true, x_pred))
rmse

HH#HH#

YOUR CODE HERE

HH#HH#

9.23038460737146

#H#
AUTOGRADER TEST - DO NOT REMOVE
#H#

